direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C22×D25, C25⋊C23, C50⋊C22, C10.11D10, (C2×C50)⋊3C2, C5.(C22×D5), (C2×C10).3D5, SmallGroup(200,13)
Series: Derived ►Chief ►Lower central ►Upper central
C25 — C22×D25 |
Generators and relations for C22×D25
G = < a,b,c,d | a2=b2=c25=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
(1 72)(2 73)(3 74)(4 75)(5 51)(6 52)(7 53)(8 54)(9 55)(10 56)(11 57)(12 58)(13 59)(14 60)(15 61)(16 62)(17 63)(18 64)(19 65)(20 66)(21 67)(22 68)(23 69)(24 70)(25 71)(26 80)(27 81)(28 82)(29 83)(30 84)(31 85)(32 86)(33 87)(34 88)(35 89)(36 90)(37 91)(38 92)(39 93)(40 94)(41 95)(42 96)(43 97)(44 98)(45 99)(46 100)(47 76)(48 77)(49 78)(50 79)
(1 39)(2 40)(3 41)(4 42)(5 43)(6 44)(7 45)(8 46)(9 47)(10 48)(11 49)(12 50)(13 26)(14 27)(15 28)(16 29)(17 30)(18 31)(19 32)(20 33)(21 34)(22 35)(23 36)(24 37)(25 38)(51 97)(52 98)(53 99)(54 100)(55 76)(56 77)(57 78)(58 79)(59 80)(60 81)(61 82)(62 83)(63 84)(64 85)(65 86)(66 87)(67 88)(68 89)(69 90)(70 91)(71 92)(72 93)(73 94)(74 95)(75 96)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25)(26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)
(1 92)(2 91)(3 90)(4 89)(5 88)(6 87)(7 86)(8 85)(9 84)(10 83)(11 82)(12 81)(13 80)(14 79)(15 78)(16 77)(17 76)(18 100)(19 99)(20 98)(21 97)(22 96)(23 95)(24 94)(25 93)(26 59)(27 58)(28 57)(29 56)(30 55)(31 54)(32 53)(33 52)(34 51)(35 75)(36 74)(37 73)(38 72)(39 71)(40 70)(41 69)(42 68)(43 67)(44 66)(45 65)(46 64)(47 63)(48 62)(49 61)(50 60)
G:=sub<Sym(100)| (1,72)(2,73)(3,74)(4,75)(5,51)(6,52)(7,53)(8,54)(9,55)(10,56)(11,57)(12,58)(13,59)(14,60)(15,61)(16,62)(17,63)(18,64)(19,65)(20,66)(21,67)(22,68)(23,69)(24,70)(25,71)(26,80)(27,81)(28,82)(29,83)(30,84)(31,85)(32,86)(33,87)(34,88)(35,89)(36,90)(37,91)(38,92)(39,93)(40,94)(41,95)(42,96)(43,97)(44,98)(45,99)(46,100)(47,76)(48,77)(49,78)(50,79), (1,39)(2,40)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,47)(10,48)(11,49)(12,50)(13,26)(14,27)(15,28)(16,29)(17,30)(18,31)(19,32)(20,33)(21,34)(22,35)(23,36)(24,37)(25,38)(51,97)(52,98)(53,99)(54,100)(55,76)(56,77)(57,78)(58,79)(59,80)(60,81)(61,82)(62,83)(63,84)(64,85)(65,86)(66,87)(67,88)(68,89)(69,90)(70,91)(71,92)(72,93)(73,94)(74,95)(75,96), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100), (1,92)(2,91)(3,90)(4,89)(5,88)(6,87)(7,86)(8,85)(9,84)(10,83)(11,82)(12,81)(13,80)(14,79)(15,78)(16,77)(17,76)(18,100)(19,99)(20,98)(21,97)(22,96)(23,95)(24,94)(25,93)(26,59)(27,58)(28,57)(29,56)(30,55)(31,54)(32,53)(33,52)(34,51)(35,75)(36,74)(37,73)(38,72)(39,71)(40,70)(41,69)(42,68)(43,67)(44,66)(45,65)(46,64)(47,63)(48,62)(49,61)(50,60)>;
G:=Group( (1,72)(2,73)(3,74)(4,75)(5,51)(6,52)(7,53)(8,54)(9,55)(10,56)(11,57)(12,58)(13,59)(14,60)(15,61)(16,62)(17,63)(18,64)(19,65)(20,66)(21,67)(22,68)(23,69)(24,70)(25,71)(26,80)(27,81)(28,82)(29,83)(30,84)(31,85)(32,86)(33,87)(34,88)(35,89)(36,90)(37,91)(38,92)(39,93)(40,94)(41,95)(42,96)(43,97)(44,98)(45,99)(46,100)(47,76)(48,77)(49,78)(50,79), (1,39)(2,40)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,47)(10,48)(11,49)(12,50)(13,26)(14,27)(15,28)(16,29)(17,30)(18,31)(19,32)(20,33)(21,34)(22,35)(23,36)(24,37)(25,38)(51,97)(52,98)(53,99)(54,100)(55,76)(56,77)(57,78)(58,79)(59,80)(60,81)(61,82)(62,83)(63,84)(64,85)(65,86)(66,87)(67,88)(68,89)(69,90)(70,91)(71,92)(72,93)(73,94)(74,95)(75,96), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100), (1,92)(2,91)(3,90)(4,89)(5,88)(6,87)(7,86)(8,85)(9,84)(10,83)(11,82)(12,81)(13,80)(14,79)(15,78)(16,77)(17,76)(18,100)(19,99)(20,98)(21,97)(22,96)(23,95)(24,94)(25,93)(26,59)(27,58)(28,57)(29,56)(30,55)(31,54)(32,53)(33,52)(34,51)(35,75)(36,74)(37,73)(38,72)(39,71)(40,70)(41,69)(42,68)(43,67)(44,66)(45,65)(46,64)(47,63)(48,62)(49,61)(50,60) );
G=PermutationGroup([[(1,72),(2,73),(3,74),(4,75),(5,51),(6,52),(7,53),(8,54),(9,55),(10,56),(11,57),(12,58),(13,59),(14,60),(15,61),(16,62),(17,63),(18,64),(19,65),(20,66),(21,67),(22,68),(23,69),(24,70),(25,71),(26,80),(27,81),(28,82),(29,83),(30,84),(31,85),(32,86),(33,87),(34,88),(35,89),(36,90),(37,91),(38,92),(39,93),(40,94),(41,95),(42,96),(43,97),(44,98),(45,99),(46,100),(47,76),(48,77),(49,78),(50,79)], [(1,39),(2,40),(3,41),(4,42),(5,43),(6,44),(7,45),(8,46),(9,47),(10,48),(11,49),(12,50),(13,26),(14,27),(15,28),(16,29),(17,30),(18,31),(19,32),(20,33),(21,34),(22,35),(23,36),(24,37),(25,38),(51,97),(52,98),(53,99),(54,100),(55,76),(56,77),(57,78),(58,79),(59,80),(60,81),(61,82),(62,83),(63,84),(64,85),(65,86),(66,87),(67,88),(68,89),(69,90),(70,91),(71,92),(72,93),(73,94),(74,95),(75,96)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25),(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)], [(1,92),(2,91),(3,90),(4,89),(5,88),(6,87),(7,86),(8,85),(9,84),(10,83),(11,82),(12,81),(13,80),(14,79),(15,78),(16,77),(17,76),(18,100),(19,99),(20,98),(21,97),(22,96),(23,95),(24,94),(25,93),(26,59),(27,58),(28,57),(29,56),(30,55),(31,54),(32,53),(33,52),(34,51),(35,75),(36,74),(37,73),(38,72),(39,71),(40,70),(41,69),(42,68),(43,67),(44,66),(45,65),(46,64),(47,63),(48,62),(49,61),(50,60)]])
C22×D25 is a maximal subgroup of
D50⋊C4 D25.D4
C22×D25 is a maximal quotient of D100⋊5C2 D4⋊2D25 Q8⋊2D25
56 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 5A | 5B | 10A | ··· | 10F | 25A | ··· | 25J | 50A | ··· | 50AD |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 5 | 5 | 10 | ··· | 10 | 25 | ··· | 25 | 50 | ··· | 50 |
size | 1 | 1 | 1 | 1 | 25 | 25 | 25 | 25 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
56 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | D5 | D10 | D25 | D50 |
kernel | C22×D25 | D50 | C2×C50 | C2×C10 | C10 | C22 | C2 |
# reps | 1 | 6 | 1 | 2 | 6 | 10 | 30 |
Matrix representation of C22×D25 ►in GL4(𝔽101) generated by
100 | 0 | 0 | 0 |
0 | 100 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
100 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 50 | 55 |
0 | 0 | 44 | 6 |
100 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 33 | 4 |
0 | 0 | 31 | 68 |
G:=sub<GL(4,GF(101))| [100,0,0,0,0,100,0,0,0,0,1,0,0,0,0,1],[100,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,50,44,0,0,55,6],[100,0,0,0,0,1,0,0,0,0,33,31,0,0,4,68] >;
C22×D25 in GAP, Magma, Sage, TeX
C_2^2\times D_{25}
% in TeX
G:=Group("C2^2xD25");
// GroupNames label
G:=SmallGroup(200,13);
// by ID
G=gap.SmallGroup(200,13);
# by ID
G:=PCGroup([5,-2,-2,-2,-5,-5,1443,418,4004]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^25=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations
Export